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Exercises for 8.3

Exercise 8.3.1 Find the Cholesky decomposition of
each of the following matrices.

[
4 3
3 5

]
a.

[
2 −1
−1 1

]
b.




12 4 3
4 2 −1
3 −1 7


c.




20 4 5
4 2 3
5 3 5


d.

Exercise 8.3.2

a. If A is positive definite, show that Ak is positive
definite for all k ≥ 1.

b. Prove the converse to (a) when k is odd.

c. Find a symmetric matrix A such that A2 is positive
definite but A is not.

Exercise 8.3.3 Let A =

[
1 a

a b

]
. If a2 < b, show that

A is positive definite and find the Cholesky factorization.

Exercise 8.3.4 If A and B are positive definite and r > 0,
show that A+B and rA are both positive definite.

Exercise 8.3.5 If A and B are positive definite, show that[
A 0
0 B

]
is positive definite.

Exercise 8.3.6 If A is an n× n positive definite matrix
and U is an n×m matrix of rank m, show that UT AU is
positive definite.

Exercise 8.3.7 If A is positive definite, show that each
diagonal entry is positive.

Exercise 8.3.8 Let A0 be formed from A by deleting
rows 2 and 4 and deleting columns 2 and 4. If A is posi-
tive definite, show that A0 is positive definite.

Exercise 8.3.9 If A is positive definite, show that
A =CCT where C has orthogonal columns.

Exercise 8.3.10 If A is positive definite, show that
A =C2 where C is positive definite.

Exercise 8.3.11 Let A be a positive definite matrix. If a

is a real number, show that aA is positive definite if and
only if a > 0.

Exercise 8.3.12

a. Suppose an invertible matrix A can be factored in
Mnn as A = LDU where L is lower triangular with
1s on the diagonal, U is upper triangular with 1s
on the diagonal, and D is diagonal with positive
diagonal entries. Show that the factorization is
unique: If A = L1D1U1 is another such factoriza-
tion, show that L1 = L, D1 = D, and U1 =U .

b. Show that a matrix A is positive definite if and
only if A is symmetric and admits a factorization
A = LDU as in (a).

Exercise 8.3.13 Let A be positive definite and write
dr = det (r)A for each r = 1, 2, . . . , n. If U is the
upper triangular matrix obtained in step 1 of the algo-
rithm, show that the diagonal elements u11, u22, . . . , unn

of U are given by u11 = d1, u j j = d j/d j−1 if j > 1.
[Hint: If LA = U where L is lower triangular with 1s
on the diagonal, use block multiplication to show that
det (r)A = det (r)U for each r.]

8.4 QR-Factorization7

One of the main virtues of orthogonal matrices is that they can be easily inverted—the transpose is the
inverse. This fact, combined with the factorization theorem in this section, provides a useful way to
simplify many matrix calculations (for example, in least squares approximation).

7This section is not used elsewhere in the book
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Definition 8.6 QR-factorization

Let A be an m×n matrix with independent columns. A QR-factorization of A expresses it as
A = QR where Q is m×n with orthonormal columns and R is an invertible and upper triangular
matrix with positive diagonal entries.

The importance of the factorization lies in the fact that there are computer algorithms that accomplish it
with good control over round-off error, making it particularly useful in matrix calculations. The factoriza-
tion is a matrix version of the Gram-Schmidt process.

Suppose A =
[

c1 c2 · · · cn

]
is an m×n matrix with linearly independent columns c1, c2, . . . , cn.

The Gram-Schmidt algorithm can be applied to these columns to provide orthogonal columns f1, f2, . . . , fn

where f1 = c1 and
fk = ck− ck·f1

‖f1‖2 f1 +
ck·f2
‖f2‖2 f2−·· ·− ck·fk−1

‖fk−1‖2 fk−1

for each k = 2, 3, . . . , n. Now write qk =
1
‖fk‖fk for each k. Then q1, q2, . . . , qn are orthonormal columns,

and the above equation becomes

‖fk‖qk = ck− (ck ·q1)q1− (ck ·q2)q2−·· ·− (ck ·qk−1)qk−1

Using these equations, express each ck as a linear combination of the qi:

c1 = ‖f1‖q1
c2 = (c2 ·q1)q1 +‖f2‖q2
c3 = (c3 ·q1)q1 +(c3 ·q2)q2 +‖f3‖q3
...

...
cn = (cn ·q1)q1 +(cn ·q2)q2 +(cn ·q3)q3 + · · ·+‖fn‖qn

These equations have a matrix form that gives the required factorization:

A =
[

c1 c2 c3 · · · cn

]

=
[

q1 q2 q3 · · · qn

]




‖f1‖ c2 ·q1 c3 ·q1 · · · cn ·q1
0 ‖f2‖ c3 ·q2 · · · cn ·q2
0 0 ‖f3‖ · · · cn ·q3
...

...
...

. . .
...

0 0 0 · · · ‖fn‖




(8.5)

Here the first factor Q =
[

q1 q2 q3 · · · qn

]
has orthonormal columns, and the second factor is an

n×n upper triangular matrix R with positive diagonal entries (and so is invertible). We record this in the
following theorem.

Theorem 8.4.1: QR-Factorization

Every m×n matrix A with linearly independent columns has a QR-factorization A = QR where Q

has orthonormal columns and R is upper triangular with positive diagonal entries.

The matrices Q and R in Theorem 8.4.1 are uniquely determined by A; we return to this below.
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Example 8.4.1

Find the QR-factorization of A =




1 1 0
−1 0 1

0 1 1
0 0 1


.

Solution. Denote the columns of A as c1, c2, and c3, and observe that {c1, c2, c3} is independent.
If we apply the Gram-Schmidt algorithm to these columns, the result is:

f1 = c1 =




1
−1

0
0


 , f2 = c2− 1

2f1 =




1
2
1
2

1

0


 , and f3 = c3 +

1
2f1− f2 =




0
0
0
1


 .

Write q j =
1
‖f j‖2 f j for each j, so {q1, q2, q3} is orthonormal. Then equation (8.5) preceding

Theorem 8.4.1 gives A = QR where

Q =
[

q1 q2 q3
]
=




1√
2

1√
6

0
−1√

2
1√
6

0

0 2√
6

0

0 0 1



= 1√

6




√
3 1 0

−
√

3 1 0
0 2 0
0 0

√
6




R =



‖f1‖ c2 ·q1 c3 ·q1

0 ‖f2‖ c3 ·q2
0 0 ‖f3‖


=




√
2 1√

2
−1√

2

0
√

3√
2

√
3√
2

0 0 1


= 1√

2




2 1 −1
0
√

3
√

3
0 0

√
2




The reader can verify that indeed A = QR.

If a matrix A has independent rows and we apply QR-factorization to AT , the result is:

Corollary 8.4.1

If A has independent rows, then A factors uniquely as A = LP where P has orthonormal rows and L

is an invertible lower triangular matrix with positive main diagonal entries.

Since a square matrix with orthonormal columns is orthogonal, we have

Theorem 8.4.2

Every square, invertible matrix A has factorizations A = QR and A = LP where Q and P are
orthogonal, R is upper triangular with positive diagonal entries, and L is lower triangular with
positive diagonal entries.
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Remark

In Section 5.6 we found how to find a best approximation z to a solution of a (possibly inconsistent) system
Ax = b of linear equations: take z to be any solution of the “normal” equations (AT A)z = AT b. If A has
independent columns this z is unique (AT A is invertible by Theorem 5.4.3), so it is often desirable to com-
pute (AT A)−1. This is particularly useful in least squares approximation (Section 5.6). This is simplified
if we have a QR-factorization of A (and is one of the main reasons for the importance of Theorem 8.4.1).
For if A = QR is such a factorization, then QT Q = In because Q has orthonormal columns (verify), so we
obtain

AT A = RT QT QR = RT R

Hence computing (AT A)−1 amounts to finding R−1, and this is a routine matter because R is upper trian-
gular. Thus the difficulty in computing (AT A)−1 lies in obtaining the QR-factorization of A.

We conclude by proving the uniqueness of the QR-factorization.

Theorem 8.4.3

Let A be an m×n matrix with independent columns. If A = QR and A = Q1R1 are
QR-factorizations of A, then Q1 = Q and R1 = R.

Proof. Write Q =
[

c1 c2 · · · cn

]
and Q1 =

[
d1 d2 · · · dn

]
in terms of their columns, and ob-

serve first that QT Q = In = QT
1 Q1 because Q and Q1 have orthonormal columns. Hence it suffices to show

that Q1 =Q (then R1 =QT
1 A=QT A=R). Since QT

1 Q1 = In, the equation QR=Q1R1 gives QT
1 Q=R1R−1;

for convenience we write this matrix as

QT
1 Q = R1R−1 =

[
ti j

]

This matrix is upper triangular with positive diagonal elements (since this is true for R and R1), so tii > 0
for each i and ti j = 0 if i > j. On the other hand, the (i, j)-entry of QT

1 Q is dT
i c j = di · c j, so we have

di · c j = ti j for all i and j. But each c j is in span{d1, d2, . . . , dn} because Q = Q1(R1R−1). Hence the
expansion theorem gives

c j = (d1 · c j)d1 +(d2 · c j)d2 + · · ·+(dn · c j)dn = t1 jd1 + t2 jd2 + · · ·+ t j jdi

because di · c j = ti j = 0 if i > j. The first few equations here are

c1 = t11d1

c2 = t12d1 + t22d2

c3 = t13d1 + t23d2 + t33d3

c4 = t14d1 + t24d2 + t34d3 + t44d4
...

...

The first of these equations gives 1 = ‖c1‖ = ‖t11d1‖ = |t11|‖d1‖ = t11, whence c1 = d1. But then we
have t12 = d1 · c2 = c1 · c2 = 0, so the second equation becomes c2 = t22d2. Now a similar argument gives
c2 = d2, and then t13 = 0 and t23 = 0 follows in the same way. Hence c3 = t33d3 and c3 = d3. Continue in
this way to get ci = di for all i. This means that Q1 = Q, which is what we wanted.
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Exercises for 8.4

Exercise 8.4.1 In each case find the QR-factorization of
A.

A =

[
1 −1
−1 0

]
a. A =

[
2 1
1 1

]
b.

A =




1 1 1
1 1 0
1 0 0
0 0 0


c. A =




1 1 0
−1 0 1

0 1 1
1 −1 0


d.

Exercise 8.4.2 Let A and B denote matrices.

a. If A and B have independent columns, show
that AB has independent columns. [Hint: Theo-
rem 5.4.3.]

b. Show that A has a QR-factorization if and only if
A has independent columns.

c. If AB has a QR-factorization, show that the same
is true of B but not necessarily A.

[Hint: Consider AAT where A =

[
1 0 0
1 1 1

]
.]

Exercise 8.4.3 If R is upper triangular and invertible,
show that there exists a diagonal matrix D with diagonal
entries ±1 such that R1 = DR is invertible, upper trian-
gular, and has positive diagonal entries.

Exercise 8.4.4 If A has independent columns, let
A = QR where Q has orthonormal columns and R is in-
vertible and upper triangular. [Some authors call this a
QR-factorization of A.] Show that there is a diagonal ma-
trix D with diagonal entries ±1 such that A = (QD)(DR)
is the QR-factorization of A. [Hint: Preceding exercise.]

8.5 Computing Eigenvalues

In practice, the problem of finding eigenvalues of a matrix is virtually never solved by finding the roots
of the characteristic polynomial. This is difficult for large matrices and iterative methods are much better.
Two such methods are described briefly in this section.

The Power Method

In Chapter 3 our initial rationale for diagonalizing matrices was to be able to compute the powers of a
square matrix, and the eigenvalues were needed to do this. In this section, we are interested in efficiently
computing eigenvalues, and it may come as no surprise that the first method we discuss uses the powers
of a matrix.

Recall that an eigenvalue λ of an n×n matrix A is called a dominant eigenvalue if λ has multiplicity
1, and

|λ |> |µ| for all eigenvalues µ 6= λ

Any corresponding eigenvector is called a dominant eigenvector of A. When such an eigenvalue exists,
one technique for finding it is as follows: Let x0 in Rn be a first approximation to a dominant eigenvector
λ , and compute successive approximations x1, x2, . . . as follows:

x1 = Ax0 x2 = Ax1 x3 = Ax2 · · ·


